1200 COLORIMETER

Instruction Manual
GENERAL OPERATING INFORMATION

- Overview ... 4
- The Keypad and Display .. 6
- Testing Tips .. 7

ANALYSIS PROCEDURE .. 8

CALIBRATION PROCEDURE ... 10

MAINTENANCE of the 1200 ... 12
 - Replacing the Battery .. 12
 - Repairs ... 12
 - Meter Disposal ... 12

TROUBLESHOOTING GUIDE ... 13

GENERAL INFORMATION

- Packaging and Delivery .. 14
- General Precautions ... 14
- Safety Precautions ... 15
- Limits of Liability .. 15
- Specifications .. 16
- Parts & Accessories .. 16
- EPA Compliance .. 17
- CE Statement ... 17

RS232 PORT .. 18

WARRANTY ... 19

CHEMICAL TESTING

- Water Sampling for Chemical Analysis 20
- Filtration .. 23
- An Introduction to Colorimetric Analysis 24
- Reagent Blank .. 26
- Colorimeter Tubes .. 26
- Sample Dilution Techniques & Volumetric Measurement 27
- Interferences .. 28
- Stray Light Interference .. 28

AVAILABLE TEST KITS .. 29
OVERVIEW

The 1200 Colorimeter is a portable, microprocessor-controlled, direct reading colorimeter. The microprocessor enables factory programmed calibrations to optimally match non-linear curves. The auto zero feature eliminates the need to set the zero manually. A sealed keypad controls the operation. The large display presents measurements and indicates low battery warnings. The 1200 will turn off automatically after 5 minutes to prolong battery life. This will not affect the user calibration and the meter will not have to be re-zeroed. The calibration and the last zero reading will be stored in memory. The 1200 is supplied with a 9 volt alkaline battery. An optional AC power adapter is available. A RS-232 serial port on the back of the meter allows an interface of the colorimeter with a computer for real time data acquisition and data storage using the PC. This port also allows an interface with a RS-232 serial printer.

See page 18 for more details on connecting the 1200 Colorimeter with computers and printers.
See page 12 for more details on battery usage and maintenance.
THE KEYPAD and DISPLAY

The DOWN ▼ arrow will DECREASE the numerical value of the display.

The UP ▲ arrow will INCREASE the numerical value of the display.

The ZERO button is used to zero the meter and for calibration procedures.

The READ button is used to turn the meter ON and to take readings. Pressing the button for 2 seconds will cause the meter to display OFF. Releasing the button when OFF is displayed turns the meter OFF.

- When the READ button is first pushed, a number will be briefly displayed that indicates the software version number.
- A walking dash (-) will be displayed when reading is taking place.
- BLA (blank) will be displayed after the ZERO button has been pushed and held for 2 seconds. If the ZERO button is released while BLA is displayed, a zero or blank reading will be taken.
- CAL (calibrate) will be displayed after the zero button has been pushed and held for 5 seconds. If the ZERO button is released while CAL is displayed, the calibration mode will be entered as indicated by a flashing display.
- OFF will be displayed after the READ button has been held down for 2 seconds. The meter will turn off when the button is released.
- ER1 will be displayed when the battery voltage is very low.
- ER2 will be displayed when concentration is over range.
- ER3 will be displayed when the LED has burned out.
- BAT will be displayed when the battery voltage is getting low. Readings are still reliable, but replace the battery as soon as possible.
Testing Tips

1. Samples should be collected in a clean glass or polyethylene container.

2. Samples should be analyzed as soon as possible after collection.

3. Discard tubes that are badly scratched.

4. Observe the shelf-life recommendations for reagents.

5. Protect reagents and components from extreme heat and cold.

ANALYSIS PROCEDURE

1. Fill the Water Sample Collecting Bottle (0688) with sample water. This will be used to dispense sample water for testing.

2. Rinse and fill a colorimeter tube (0290) to the 10 mL line with sample water. Cap and wipe dry.

3. Insert the tube into the chamber, being sure to align the index line with the arrow on meter. Close the lid. This tube is the blank or zero.

4. Push the **READ** button to turn the meter on. Press the **ZERO** button and hold it for 2 seconds until **BLA** is displayed. Release the button to take a zero reading (0 ppm).

5. React a sample following the individual test procedure.

6. Wipe the tube clean with a lint-free cloth.

7. Insert the tube into the chamber, being sure to align the index line with the arrow on meter. Close the lid.

8. Push the **READ** button. The concentration in ppm will be displayed within 2 seconds.
The 1200 will turn off automatically 5 minutes after the last button push. To turn the meter off manually, hold the READ button for 2 seconds. Release the button when OFF is displayed.

Note:

If ER^2 is displayed, the concentration is over range. The sample must be diluted and re-tested. See page 27.
The 1200 has been pre-calibrated. Recalibration of the 1200 by the user is not required. However, a procedure to standardize the calibration (shown here) should be performed to obtain the most accurate readings.

1. Prepare standard solutions to be tested.

2. Rinse and fill a colorimeter tube (0290) to the 10 mL line with standard solution. Cap and wipe dry.

3. Insert the tube into the chamber, being sure to align the index line with the arrow on the meter. Close the lid. This tube is the blank or zero.

4. Push the READ button to turn the meter on. Press the ZERO button and hold it for 2 seconds until BLA is displayed. Release the button to take a zero reading (0 ppm).

5. React a standard that is in the range of the reagent system, and similar to the expected range of the sample. Follow the individual test procedure.

6. Wipe the tube clean with a lint-free cloth.

7. Insert the tube into the chamber, being sure to align the index line with the arrow on the meter. Close the lid.
The 1200 can be calibrated with two prepared standards. The concentrations of the standards should be chosen from the low and high ends of the range of the meter. The low standard must be less than 5% of over range. To calibrate the meter with two standards, follow steps 1-10 of the calibration procedure for one reacted sample. Repeat steps 1-11 of the calibration procedure with the second reacted standard.

- The calibration procedure should be followed as often as required by regulations and laws for compliance monitoring.
- To reset the calibration to the factory calibration: with the meter off, hold down the ▼ and push READ. The meter will turn on and the calibration will be reset.
REPLACING THE BATTERY

The LaMotte 1200 uses a standard 9-volt alkaline battery that is available worldwide. The battery compartment is located on the bottom of the case. To replace the battery:

1. Open the battery compartment lid.
2. Remove the battery and disconnect the battery from the polarized plug.
3. Carefully connect the new battery to the polarized plug and insert it into the compartment.
4. Close the battery compartment lid.

REPAIRS

If it is necessary to return the instrument for repair, telephone LaMotte Company at 1-800-344-3100 or fax 1-410-778-6394 for a return authorization number.

METER DISPOSAL

Waste Electrical and Electronic Equipment (WEEE)

Natural resources were used in the production of this equipment. This equipment may contain materials that are hazardous to health and the environment. To avoid harm to the environment and natural resources, the use of appropriate take-back systems is recommended.

Take-back systems will allow the materials to be reused or recycled in a way that will not harm the environment. For more information on approved collection, reuse, and recycling systems contact your local or regional waste administration or recycling service.
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>CHECK</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter won’t turn on</td>
<td>Battery</td>
<td>Replace</td>
</tr>
<tr>
<td></td>
<td>AC Adapter</td>
<td>Plug in</td>
</tr>
<tr>
<td></td>
<td>AC Wall Outlet</td>
<td>Verify power source</td>
</tr>
<tr>
<td></td>
<td>Contact LaMotte for Return Authorization</td>
<td>Return to LaMotte for repair</td>
</tr>
<tr>
<td>Suspect Calibration</td>
<td>Check calibration with standards</td>
<td>Use new standards</td>
</tr>
<tr>
<td></td>
<td>Verify standard concentration</td>
<td>Run test with alternative reagent system</td>
</tr>
<tr>
<td></td>
<td>Verify with another meter</td>
<td>Check other meter calibrations</td>
</tr>
<tr>
<td></td>
<td>Check tube alignment</td>
<td>Re-align tube</td>
</tr>
<tr>
<td></td>
<td>Check sample tubes for dirt and scratches</td>
<td>Check, clean and/or replace if necessary</td>
</tr>
<tr>
<td></td>
<td>Check to see if internal meter components</td>
<td>Always dry tubes before inserting.</td>
</tr>
<tr>
<td></td>
<td>are wet</td>
<td>Examine chamber for visible moisture.</td>
</tr>
<tr>
<td></td>
<td>Reset meter to factory calibration</td>
<td>With meter off, hold down ▼ and press READ</td>
</tr>
<tr>
<td></td>
<td>Contact LaMotte for Return Authorization</td>
<td>Return for calibration check</td>
</tr>
<tr>
<td>ER1</td>
<td>Very low battery</td>
<td>Change battery</td>
</tr>
<tr>
<td>ER2</td>
<td>Over range</td>
<td>Dilute sample</td>
</tr>
<tr>
<td>ER3</td>
<td>Burnt out LED</td>
<td>Call LaMotte</td>
</tr>
<tr>
<td>BAT</td>
<td>Low battery</td>
<td>Change battery</td>
</tr>
</tbody>
</table>
PACKAGING & DELIVERY

Experienced packaging personnel at LaMotte Company assure adequate protection against normal hazards encountered in transportation of shipments. After the product leaves the manufacturer, all responsibility for safe delivery is assured by the transportation company. Damage claims must be filed immediately with the transportation company to receive compensation for damaged goods.

Should it be necessary to return the instrument for repair or servicing, pack the instrument carefully in a suitable container with adequate packing material. A return authorization number must be obtained from LaMotte Company by calling 1-800-344-3100 or faxing 1-410-778-6394. Attach a letter with the authorization number to the shipping carton which describes the reason for the return. This information will enable the service department to make the required repairs more efficiently.

GENERAL PRECAUTIONS

Read the instruction manual before attempting to set up or operate this instrument. Failure to do so could result in personal injury or damage to the instrument.

The 1200 Colorimeter should not be stored or used in a wet or corrosive environment. Care should be taken to prevent water from wet colorimeter tubes from entering the colorimeter light chamber.
SAFETY PRECAUTIONS

Read labels on all reagent containers. Some labels include precautionary notices and first aid information. Certain reagents are considered hazardous and are designated with a * in the instruction manual. To view or print a Material Safety Data Sheet (MSDS) go to www.lamotte.com. To obtain a printed copy, contact LaMotte by e-mail, phone or FAX. Additional information for all LaMotte reagents is available in the United States, Canada, Puerto Rico, and the US Virgin Islands from Chem-Tel by calling 1-800-255-3924. For other areas, call 813-248-0585 collect to contact Chem-Tel’s International access number. Each reagent can be identified by the four digit number listed on the upper left corner of the reagent label, in the contents list and in the test procedures.

LIMITS OF LIABILITY

Under no circumstances shall LaMotte Company be liable for loss of life, property, profits, or other damages incurred through the use or misuse of their products.
SPECIFICATIONS

<table>
<thead>
<tr>
<th>Instrument Type</th>
<th>Single wavelength, direct reading colorimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Wavelengths:</td>
<td>420 nm, 460 nm, 510 nm, 530 nm, 570 nm or 605 nm, 562 nm, 565 nm, 585 mm, 635 mm</td>
</tr>
<tr>
<td>Readable Resolution:</td>
<td>Determined by test factor</td>
</tr>
<tr>
<td>Photometric Precision:</td>
<td>±0.001 Absorbance Unit</td>
</tr>
<tr>
<td>Range:</td>
<td>0-2.00 absorbance units</td>
</tr>
<tr>
<td>Display:</td>
<td>3 ½ digits</td>
</tr>
<tr>
<td>Response Time:</td>
<td>2 seconds</td>
</tr>
<tr>
<td>Warm-up Time:</td>
<td>Not required</td>
</tr>
<tr>
<td>Lamp:</td>
<td>LED</td>
</tr>
<tr>
<td>Detector:</td>
<td>Silicon Photodiode</td>
</tr>
<tr>
<td>Sample:</td>
<td>10 mL in capped tube</td>
</tr>
<tr>
<td>Sample Chamber:</td>
<td>Accepts 25mm diameter flat-bottomed tubes (capped)</td>
</tr>
<tr>
<td>Power Source:</td>
<td>Battery Operation: 9 Volt Alkaline</td>
</tr>
<tr>
<td>Line Operation:</td>
<td>110V/60Hz, 220V/50Hz, with available adapter</td>
</tr>
<tr>
<td>Size (LXWXH):</td>
<td>8.5 x 16.2 x 6.7 cm, 3.4 x 6.4 x 2.6 inches</td>
</tr>
<tr>
<td>Shipping Weight:</td>
<td>11 oz (312 g) meter only</td>
</tr>
<tr>
<td>Serial Interface:</td>
<td>RS232, 8 pin mDIN, 9600b, 8, 1, n</td>
</tr>
</tbody>
</table>

PARTS & ACCESSORIES

Included in the Model 1200 Colorimeter Kit:

- 1200 Colorimeter
- Colorimeter tubes, set of 6
- Water Sample Collecting Bottle
- Reagent System

Optional Accessories

- AC Adapter, 110V/220V Code 1754
- Colorimeter Tubes, set of 6 Code 0290-6
EPA COMPLIANCE

The 1200 Chlorine Colorimeter is an EPA Accepted instrument. EPA Accepted means that the instrument meets requirements for colorimeters as found in test procedures that are approved for the National Primary Drinking Water Regulations (NPDWR) or National Pollutant Discharge Elimination Systems (NPDES) compliance monitoring programs. EPA Accepted instruments may be used with approved test procedures without additional approval.

CE COMPLIANCE

The 1200 Colorimeter has been independently tested and has earned the European CE Mark of Compliance for electromagnetic compatibility and safety.

DECLARATION OF CONFORMITY

Standards to which Conformity Declared: EN60065, EN61000-6-1, EN61010
Manufacturer’s Name: LaMotte Company
Manufacturer’s Address: 802 Washington Ave PO Box 329 Chestertown, MD 21620
Type of Equipment: Water Quality Meters
Model Number: 2020/1200
Year of Manufacture: 1997

I, the undersigned, hereby declare that the equipment specified above conforms to the above Directive and Standards.

Place: Chestertown, MD
Date: 9/2/11
Signature: James W. Egan Jr.
Name: Director of Research & Development
Position:

Note: The devise complies to the product specifications for the Low Voltage Directive when furnished with the AC Adaptor (Code 1754).
The 1200 Colorimeter may be interfaced with any Windows PC computer using an Interface cable (Code 1772). The meter may also be interfaced with an RS-232 serial printer, using an appropriate cable and setting the printer configuration to the output below.

Output: RS232 compatible, asynchronous serial, 9600 baud, no parity, 8 data bits, 1 stop bit.

Pin out:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>RS-232 TxD</td>
</tr>
<tr>
<td>3</td>
<td>RS-232 RxD</td>
</tr>
<tr>
<td>4, 6, 8</td>
<td>Digital ground</td>
</tr>
</tbody>
</table>

Back View

RS232 Serial Port
LaMotte Company warrants this instrument to be free of defects in parts and workmanship for 1 year from the date of shipment. If it should become necessary to return the instrument for service during or beyond the warranty period, contact our Technical Service Department at 410-778-3100 or tech@lamotte.com for a return authorization number or visit www.lamotte.com for troubleshooting help. The sender is responsible for shipping charges, freight, insurance and proper packaging to prevent damage in transit. This warranty does not apply to defects resulting from action of the user such as misuse, improper wiring, operation outside of specification, improper maintenance or repair, or unauthorized modification. LaMotte Company specifically disclaims any implied warranties or merchantability or fitness for a specific purpose and will not be liable for any direct, indirect, incidental or consequential damages. LaMotte Company’s total liability is limited to repair or replacement of the product. The warranty set forth above is inclusive and no other warranty, whether written or oral, is expressed or implied.

To register your meter with the LaMotte Service Department, go to www.lamotte.com and choose SUPPORT on the top navigation bar.
WATER SAMPLING FOR CHEMICAL ANALYSIS

Taking Representative Samples

The underlying factor to be considered for any type of water sampling is whether or not the sample is truly representative of the source. To properly collect a representative sample:

- Sample as frequently as possible.
- Collect a large sample or at least enough to conduct whatever tests are necessary.
- Make a composite sample for the same sampling area.
- Handle the sample in such a way as to prevent deterioration or contamination before the analysis is performed.
- Perform analysis for dissolved gases such as dissolved oxygen, carbon dioxide, and hydrogen sulfide immediately at the site of sampling. These factors, as well as samples for pH, cannot be stored for later examination.
- Make a list of conditions or observations which may affect the sample. Other considerations for taking representative samples are dependent upon the source of the sample. Taking samples from surface waters involves different considerations than taking samples from impounded and subsurface waters.

Sampling of Open Water Systems

Surface waters, such as those found in streams and rivers, are usually well mixed. The sample should be taken downstream from any tributary, industrial or sewage pollution source. For comparison purposes samples may be taken upstream and at the source of the pollution.
In ponds, lakes, and reservoirs with restricted flow, it is necessary to collect a number of samples in a cross section of the body of water, and where possible composite samples should be made to ensure representative samples.

To collect samples from surface waters, select a suitable plastic container with a tight fitting screw cap. Rinse the container several times with the sample to be tested. Immerse the container below the surface with the opening facing the current until it is filled to overflowing. Replace the cap. If the sample is not to be tested immediately, pour a small part of the sample out and reseal. This will allow for any expansion. Any condition which might affect the sample should be listed.

Subsurface sampling is required to obtain a vertical profile of streams, lakes, ponds, and reservoirs at specific depths. This type of sampling requires more sophisticated sampling equipment.

For dissolved oxygen studies, or for tests requiring small sample sizes, a Water Sample Bottle (Code 3-0026) will serve as a subsurface or in-depth sampler. This weighted device is lowered to the sampling depth and allowed to rest at this depth for a few minutes. The water flows into the sample chamber displacing the air which bubbles to the surface. When the bubbles cease to rise, the device has flushed itself more than three times and it may be raised to the surface. The inner chamber of the sampling device is lifted out and the water sample can be dispensed for subsequent chemical analysis.
A Snap-Plunger Water Sampler (Code 1077) is another “in-depth” sampling device which is designed to collect large samples for multiple tests. This collection apparatus is a hollow cylinder with a spring loaded plunger attached to each end. The device is cocked above the surface of the water and lowered to the desired depth. A weighted messenger is sent down the calibrated line to trip the closing mechanism and the plungers seal the sample from mixing with intermediate layers as it is brought to the surface. A special drain outlet is provided to draw off samples.

Sampling of Closed System

To obtain representative samples from confined water systems, such as pipe lines, tanks, vats, filters, water softeners, evaporators and condensers, different considerations are required due to chemical changes which occur between the inlet and outlet water. One must have a basic understanding of the type of chemical changes which occur for the type of equipment used. Also, consideration should be given to the rate of passage and retaining time for the process water.

Temperature changes play an important part in deciding exactly what test should be performed. Process water should be allowed to come to room temperature, 20–25°C, before conducting any tests. When drawing off samples from an outlet pipe such as a tap, allow sample to run for several minutes, rinsing the container several times before taking the final sample. Avoid splashing and introduction of any contaminating material.
Filtration

When testing natural waters that contain significant turbidity due to suspended solids and algae, filtration is an option. Reagent systems, whether EPA, Standard Methods, LaMotte or any others, will generally only determine dissolved constituents. Both EPA and Standard Methods suggest filtration through a 0.45 micron filter membrane, to remove turbidity, for the determination of dissolved constituents. To test for total constituents, organically bound and suspended or colloidal materials, a rigorous high temperature acid digestion is necessary.

LaMotte offers a Turbidity Free Water Kit (Code 4185)
Most test substances in water are colorless and undetectable to the human eye. To test for their presence we must find a way to “see” them. The LaMotte colorimeter can be used to measure any test substance that is itself colored or can be reacted to produce a color. In fact a simple definition of colorimetry is “the measurement of color” and a colorimetric method is “any technique used to evaluate an unknown color in reference to known colors”. In a colorimetric chemical test, the intensity of the color from the reaction must be proportional to the concentration of the substance being tested. Some reactions have limitations or variances inherent to them that may give misleading results. Many such interferences are discussed with each particular test instruction. In the most basic colorimetric method the reacted test sample is visually compared to a known color standard. However, accurate and reproducible results are limited by the eyesight of the analyst, inconsistencies in the light sources, and the fading of color standards.

To avoid these sources of error, a colorimeter can be used to photoelectrically measure the amount of colored light absorbed by a colored sample in reference to a colorless sample (blank).

White light is made up of many different colors or wavelengths of light. A colored sample typically absorbs only one color or one band of wavelengths from the white light. Only a small difference would be measured between white light before it passes through a colored sample versus after it passes through a colored sample. The reason for this is that the one color absorbed by the sample is only a small portion of the total amount of light passing through the sample. However, if we could select only that one color or band of wavelengths...
of light to which the test sample is most sensitive, we would see a large difference between the light before it passes through the sample and after it passes through the sample.

A colorimeter passes a colored light beam through an optical filter which transmits only one particular color or band of wavelengths of light to the photodetector where it is measured. The difference in the amount of colored light transmitted by a colorless sample (blank) and the amount of colored light transmitted by a colored sample is a measurement of the amount of colored light absorbed by the sample. In most colorimetric tests the amount of colored light absorbed is directly proportional to the concentration of the test factor producing the color and the path length through the sample. However, for some tests the amount of colored light absorbed is inversely proportional to the concentration.

The choice of the correct optical filter and therefore the correct color or wavelength of light is important. It is interesting to note that the filter that gives the most sensitive calibration for a test factor is the complementary color of the test sample. For example, the Nitrate-Nitrogen test produces a pink color proportional to the nitrate concentration in the sample (the greater the nitrate concentration, the darker the pink color). A green filter is used since a pinkish-red solution absorbs mostly green light.

The 1200 Colorimeter has been specially calibrated to read test results directly in parts per million (ppm) of the test factor. The sensitivity of the response has been maximized by using a specific, complementary light source for each test.
REAGENT BLANK

Some tests will provide greater accuracy if a reagent blank is determined, to compensate for any color or turbidity resulting from the reagents themselves. A reagent blank is performed by running the test procedure on 10 mL of deionized or demineralized water. Use distilled or deionized water to zero the meter. Insert the reagent blank into the colorimeter chamber and select READ. Note the result of the reagent blank. Perform the test on the unknown as described, blanking with the sample water. Subtract the result of the reagent blank from the unknown and all subsequent test results.

COLORIMETER TUBES

The handling of the colorimeter tubes is of utmost importance. It is imperative that the tubes and light chamber be clean and dry. The tubes must be defect-free. Scratches and abrasions will affect the accuracy of the readings. Tubes can be acid washed periodically. After a tube has been filled and capped, it should be held by the cap and the outside surface should be wiped with a clean, lint-free absorbent cloth until it is dry and smudge-free. Handling the tube only by the cap will avoid problems from fingerprints. Always set the clean tube aside on a clean surface that will not contaminate the tube. Variability in the geometry and quality of the glassware is the predominate cause of variability in results. Orientation of the tube in the chamber will greatly affect the test results. To obtain the most accurate results, the tubes should be positioned so that the index line on the tube is aligned with the arrow-shaped index mark molded into the housing in front of the light chamber.
SAMPLE DILUTION TECHNIQUES & VOLUMETRIC MEASUREMENTS

If a test result using the 1200 Colorimeter gives an ER2 (over range) message, the sample must be diluted. Then the test should be repeated to obtain a reading which is in the concentration range for the test. (Note: This is not true for colorimetric determination of pH.)

The following table gives quick reference guidelines on dilutions of various proportions. All dilutions are based on a 10 mL volume, so several dilutions will require small volumes of the water sample. Graduated pipets should be used for all dilutions.

<table>
<thead>
<tr>
<th>Size of Sample</th>
<th>Deionized Water to Bring Volume to 10 mL</th>
<th>Multiplication Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mL</td>
<td>0 mL</td>
<td>1</td>
</tr>
<tr>
<td>5 mL</td>
<td>5 mL</td>
<td>2</td>
</tr>
<tr>
<td>2.5 mL</td>
<td>7.5 mL</td>
<td>4</td>
</tr>
<tr>
<td>1 mL</td>
<td>9 mL</td>
<td>10</td>
</tr>
<tr>
<td>0.5 mL</td>
<td>9.5 mL</td>
<td>20</td>
</tr>
</tbody>
</table>

If volumetric glassware is not available, dilutions can be made with the colorimeter tube. Fill the colorimeter tube to the 10 mL line with the sample then transfer it to another container. Add 10 mL volumes of demineralized water to the container and mix. Transfer back 10 mL of the diluted sample to the colorimeter tube and follow the test procedure. Continue diluting and testing until a reading, which is in the concentration range for the test, is obtained. Be sure to multiply the concentration found by the dilution factor (the number of total 10 mL volumes used).

Example:

Measure 5 mL of the water sample into a graduated cylinder. Add demineralized or distilled water until the cylinder is filled to the 10 mL line. The sample has been diluted by one-half, and the dilution factor is therefore 2. Perform the test procedure, then multiply the resulting concentration by 2 to obtain the test result.

Example:

10 mL of sample is diluted with three 10 mL volumes of demineralized water; the dilution factor is four.
INTERFERENCES

LaMotte reagent systems are designed to minimize most common interferences. Individual test instructions discuss interferences unique to that test. Be aware of possible interferences in the water being tested. The reagent systems also contain buffers to adjust the water sample to the ideal pH for the reaction. It is possible that the buffer capacity of the water sample may exceed the buffer capacity of the reagent system and the ideal pH will not be obtained. If this is suspected, measure the pH of a reacted distilled water reagent blank using a pH meter. This is the ideal pH for the test. Measure the pH of a reacted water sample using the pH meter. If the pH is significantly different from the ideal value, the pH of the sample should be adjusted before testing. Interferences due to high concentration of the substance being tested, can be overcome by sample dilution (see page 27).

STRAY LIGHT INTERFERENCE

Stray light interference can be minimized by zeroing the meter and reading a sample with the lid closed. Turbidimetric determinations (i.e. sulfate) are most likely to exhibit a stray light interference. Colorimetric tests are less likely to have this problem unless the samples are turbid. If sample turbidity is causing a stray light interference, filtration may be needed. (see page 23)
<table>
<thead>
<tr>
<th>TEST FACTOR</th>
<th>ORDER CODE/MODEL</th>
<th>RANGE (PPM)</th>
<th>DETECTION LIMIT</th>
<th>TEST METHOD (# OF REAGENTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia Nitrogen</td>
<td>3680-01 DC 1200-NH</td>
<td>0-5.00</td>
<td>0.05</td>
<td>Nessler (2)</td>
</tr>
<tr>
<td>Bromine</td>
<td>3672-01 DC 1200-BR</td>
<td>0-7.00</td>
<td>0.05</td>
<td>DPD Tablets (1)</td>
</tr>
<tr>
<td>Chlorine (Free& Total)</td>
<td>3670-01 DC1200-CL</td>
<td>0-4.00</td>
<td>0.05</td>
<td>DPD Tablets (2)</td>
</tr>
<tr>
<td>Chlorine (Free& Total)</td>
<td>3670-01-LI DC1200-CL-LI</td>
<td>0-4.00</td>
<td>0.05</td>
<td>DPD Liquid (3)</td>
</tr>
<tr>
<td>Chlorine Dioxide</td>
<td>3671-01 DC1200-CLO</td>
<td>0-7.00</td>
<td>0.05</td>
<td>DPD Tablets with Glycine Solution (2)</td>
</tr>
<tr>
<td>Chlorine Dioxide</td>
<td>3671-01-LI DC1200-CLO-LI</td>
<td>0-7.00</td>
<td>0.05</td>
<td>DPD Liquid (3)</td>
</tr>
<tr>
<td>Copper</td>
<td>3673-01 DC1200-CO</td>
<td>0-8.00</td>
<td>0.03</td>
<td>Diethyldithiocarbamate (1)</td>
</tr>
<tr>
<td>Fluoride</td>
<td>3674-01 DC1200-FL</td>
<td>0-2.00</td>
<td>0.03</td>
<td>Aliizarin-Zirconyl (2)</td>
</tr>
<tr>
<td>Iron</td>
<td>3681-01 DC1200-FE</td>
<td>0-4.00</td>
<td>0.25</td>
<td>1-10 Phenanthroline (2)</td>
</tr>
<tr>
<td>Manganese</td>
<td>3682-01 DC1200-MN</td>
<td>0-0.90</td>
<td>0.01</td>
<td>PAN (3)</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>3676-01 DC1200-MO</td>
<td>0-50</td>
<td>0.5</td>
<td>Thioglycolate (3)</td>
</tr>
<tr>
<td>Nitrate Nitrogen</td>
<td>3677-01 DC1200-NA</td>
<td>0-3.00</td>
<td>0.05</td>
<td>Cadmium Reduction (2)</td>
</tr>
<tr>
<td>Ozone</td>
<td>3678-01 DC1200-OZ</td>
<td>0-0.40</td>
<td>0.04</td>
<td>Indigo Blue (3)</td>
</tr>
<tr>
<td>Ozone (without other oxidizers)</td>
<td>3598 DC1200-OZ-DPD</td>
<td>0-3.00</td>
<td>0.03</td>
<td>DPD Liquid (3)</td>
</tr>
<tr>
<td>Phosphate</td>
<td>3679-01 DC1200-PLR</td>
<td>0-3.00</td>
<td>0.07</td>
<td>Ascorbic Acid (2)</td>
</tr>
<tr>
<td>Sulfate</td>
<td>3683-01 DC1200-SU</td>
<td>0-100.0</td>
<td>1.0</td>
<td>Barium Chloride (1)</td>
</tr>
</tbody>
</table>

Test kit includes 1200 meter and reagent system.